Solid Phase Extraction for Water Analysis

presented by

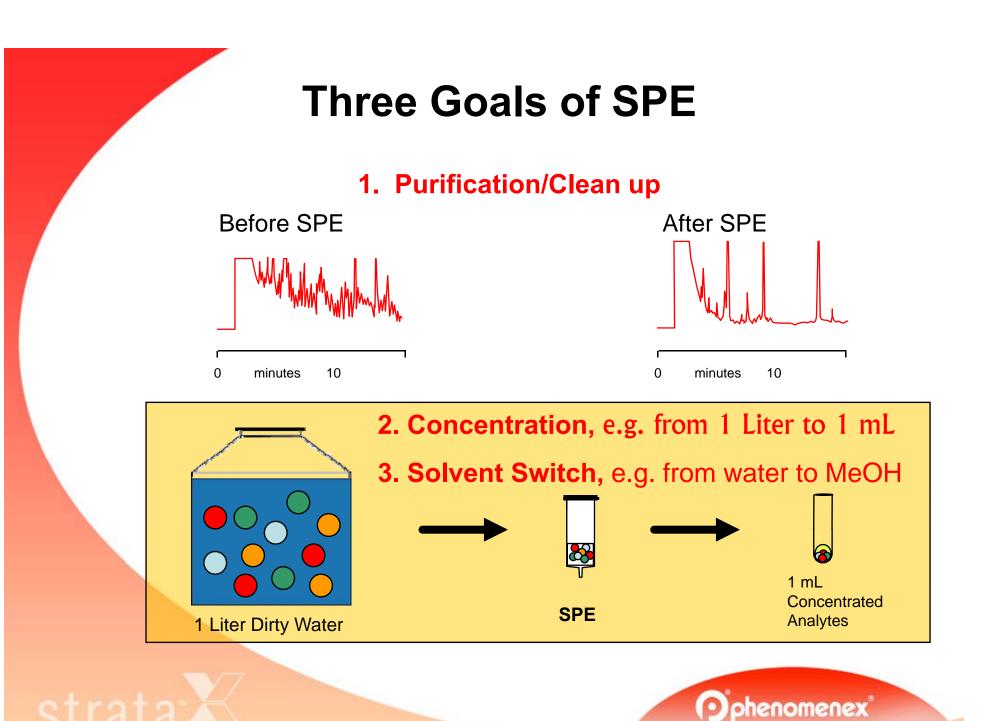
Dr. Bernd Thierfelder

strataX

Outline

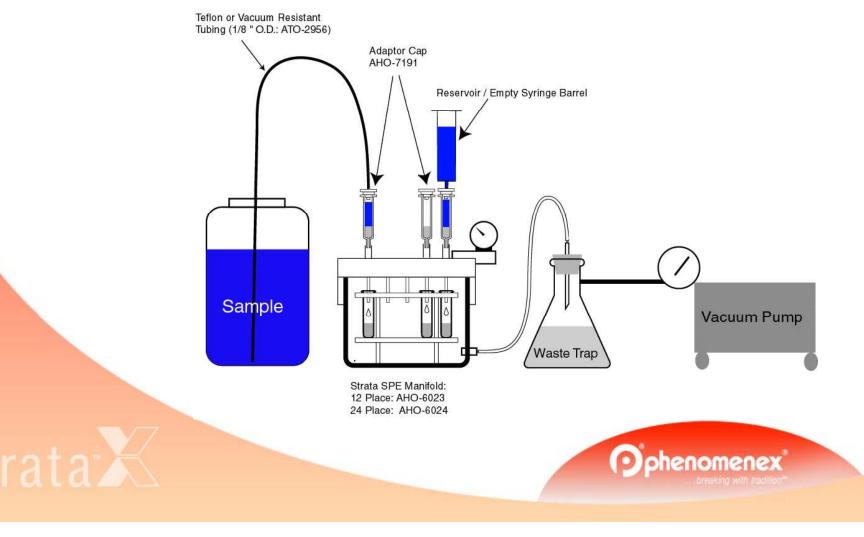
- 1. Introduction in SPE
- 2. Retention Mechanisms / Sorbent Selectivity
- 3. strata[™]-X for Water Analysis
- 4. Applications of Water Analysis

1. Introduction in SPE

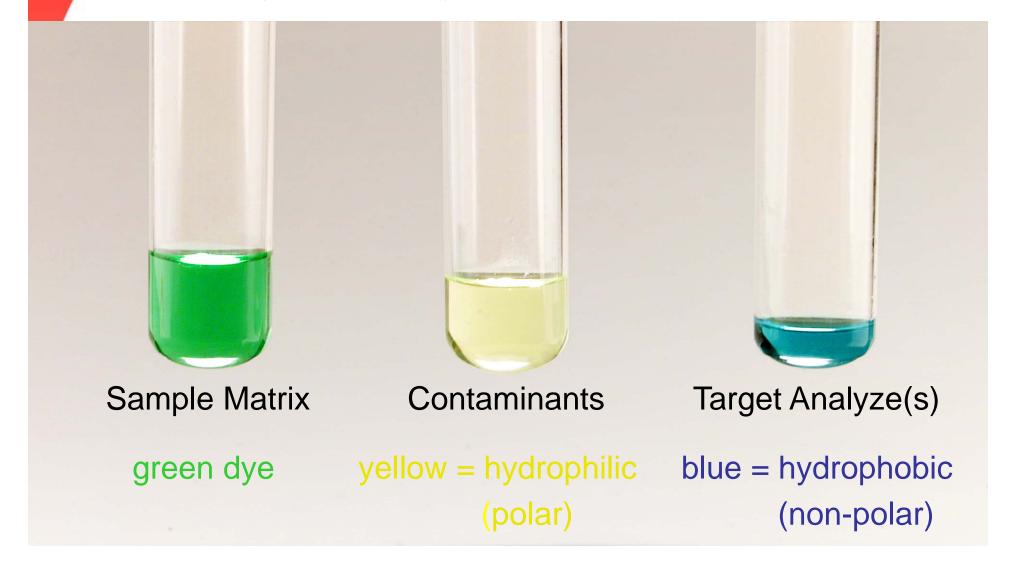


What is Solid Phase Extraction (SPE)?

It's a very selective and effective sample preparation method.



Processing Samples


with a Vacuum Manifold, a pump and a waste trap

Sample reservoir is connected to cartridge by a tubing and adaptor cap. Atmospheric pressure pushes water sample through cartridge and flow is controlled by stopcocks between cartridge and cover of manifold.

SPE of Aqueous Samples

Example: A green sample containing a blue (non-polar) and yellow (polar) dye can be separated with SPE.

1a. Condition

1b. Equilbrate

The two steps remove air and wet phase; phase is extended to its max. level.

strataX

2. Load sample

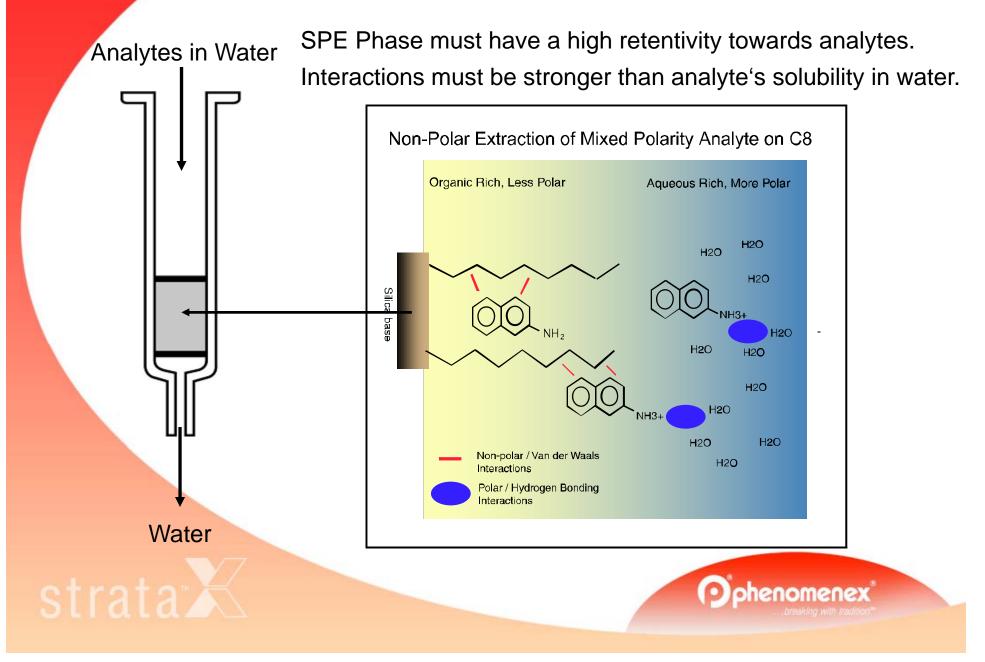
Analytes are retained by the sorbent. 3. Wash

Contaminants are washed off the phase.

Strata C18-E

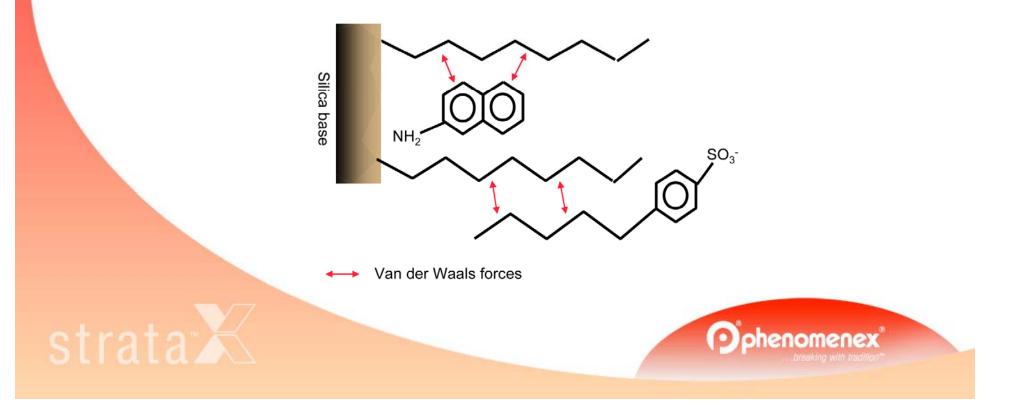
4. Elute

phenomenex


Analytes are eluted from the phase.

2. Retention Mechanisms / Sorbent Selectivity

SPE of Analytes from Water

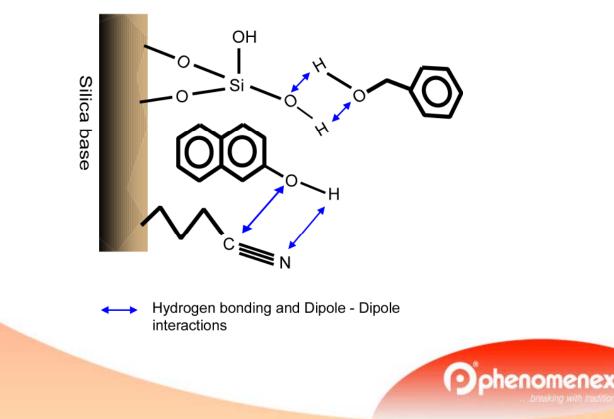

Retention Mechanism

Hydrophobic / Non-Polar / Reversed Phase

Typical phases: C18, C8, Phenyl, Polymers (i.e. PSDVB, strata-X)

Most common for aqueous samples / Huge difference in polarity between phase and water. Organic compounds interact with organic solid phase due to their organic frame.

> Hyrdrophobic / Non-Polar / Reverse Phase Interactions with C8 Functional Groups

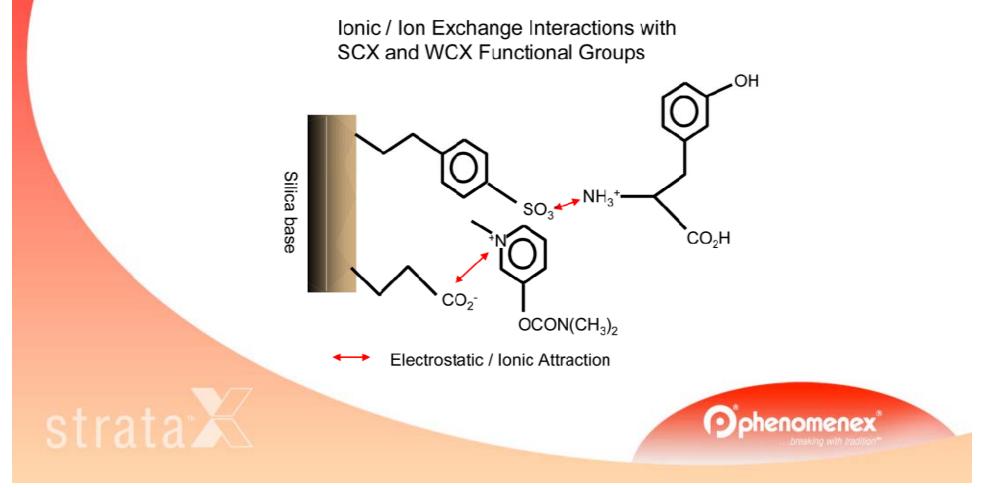

Retention Mechanism

Hydrophilic / Polar / Normal Phase

Typical phases: Silica, Florisil®, NH₂, CN

In most cases used for strong organic and non-aqueous environmental samples like hexane.

Hydrophylic / Polar / Normal Phase Interactions with SI and CN Functional Groups



Retention Mechanism

Ion Exchange – Ionic interactions

Typical phases: SCX, WCX, SAX, WAX (NH₂), strata-X-C, -X-CW, -X-AW

Can be used for aqueous environmental samples if just a specific ionic class of analytes has to be extracted. Adjusting appropriate pH for load and elution step is necessary.

Matrix

Polarity of sample and solid phase must be opposed.

Liquid Phase / Sample	Solid Phase
Aqueous: Water, biological fluids, aqueous homogenates	Non-Polar C18, C8, Phenyl, SDB, strata-X
Organic: Non-polar organic solvents	Polar Silica, Florisil®, NH ₂ , CN
Aqueous or Organic	Ion Exchange SCX, WCX, SAX, WAX, strata-X-C, -X-CW, -X-AW

Sorbent Selectivity

Selection of sorbent dependent on analyte and sample matrix. These sorbents have a single retention mechanism.

Most common	SDB Polymer	Non-polar
RP phases	C18E	Reversed Phase Sorbents
l	C18U	for organic compounds in aqueous environmental
Classic	C8	samples, e.g. surface water.
Sorbents	Phenyl	
	CN	Polar
NH		Normal Phase Sorbents for polar organic compounds in
Most common Si		organic solvents e.g. organic
NP phase	s FL-PR	IEX Sorbents for specific
SCX, WCX, SAX		lonic ionic compounds from
		aqueous or organic samples.

phenomenex

Sorbent Selectivity

Question: Can a sorbent have more than one retention mechansim?

Multiple Modes

Mixed Phases: Hydrophobic + Ion exchange Typical phases: strata Screen C and strata Screen A

"Universal": Hydrophobic + Hydrophilic

Typical phases: modified polymers such as strata-X

"Universal": Hydrophobic + Hydrophilic + Ion exchange

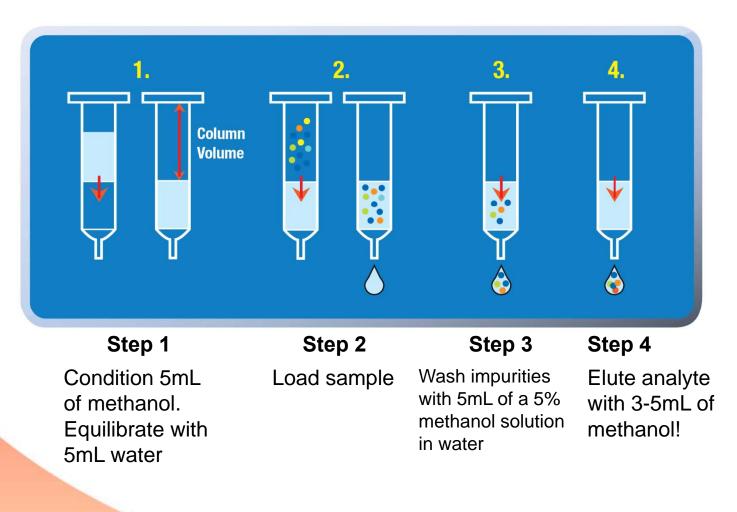
Typical phases: modified polymers such as strata-X-C(W), -AW

3. strata-X for Water Analysis

Modern Polymer Sorbents strata-X / strata-X-C(W) / strata-X-AW

- strata-X:hydrophobic and hydrophilic retention mechanismfor neutral non-polar and polar compounds
- strata-X-C: strata-X + strong cation exchange for bases
- strata-X-CW: strata-X + weak cation exchange for strong bases
- strata-X-AW: strata-X + weak anion exchange for acids

33 μm and 100 μm particles with large surface area > 800m²/g / 500m²/g pH stability 1-14



Advantages of strata-X Series

- Simplicity: One method approach
- High & reproducible recoveries for acids, bases and neutrals
 - \Rightarrow Can be used for all kinds of environmental aqueous samples
- High pH stability (pH 1-14)
- High capacity \rightarrow lower solvent consumption
- Resistant to de-conditioning
- Clean = LC/MS and GC/MS friendly

strata-X simplifies Method Development

Method based on a 200mg sorbent bed mass

phenomenex

strataX

4. Applications of Water Analysis

Multiresidue solid phase extraction of 16 pesticides from groundwater coupled with high-performance liquid chromatography *

SPE Method		Pesticide	<i>R%</i>		$\begin{array}{c} LOQ \\ (\mu g l^{-1}) \end{array}$
				Strata X	
Sorbent:	strata-X, 200mg/6mL	Desysopropylatrazine		82(2)	0.009
		Desethylatrazine		92(3)	0.009
Conditior	ning: 10mL dichloromethane	Aldicarb		71(4)	0.14
	0	Simazine		85(5)	0.009
	10mL acetontrile	Carbofuran		97(5)	0.06
		Metalaxyl		100(4)	0.06
	10mL water	Atrazine		90(4)	0.009
		2,4-D		113(4)	0.07
Load:	1L water sample	Metazachlor		90(4)	0.06
		Dicloran		84(5)	0.03
Wash:	water/methanol (95:5 v/v)	Phenmedipham		66(2)	0.05
		Linuron		93(2)	0.05
Elution:	5mL acetonitrile	Iprodione		71(3)	0.05
		Procymidone		74(6)	0.07
	5mL methanol	Fenitrothion		97(1)	0.15
		Vinclozolin		88(10)	0.1
10 million (1997)					

* Talanta 71 (2007) 25–30, Angelo Antonio D'Archivio, Maria Fanelli, Pietro Mazzeo, Fabrizio Ruggieri Universit`a degli Studi di L'Aquila, Dipartimento di Chimica, Ingegneria Chimica e Materiali, Via Vetoio, 67010 Coppito, L'Aquila, Italy

Solid phase extraction of pesticides from surface water *

SPE Method

		1.7			
Sorbent: str	ata-X, 200mg/6mL	[
Conditioning	Conditioning: 3x 1mL MeOH/ACN (1:1, v/v)				
	3x 2mL water]]			
Load:	1L water sample (+ 0.5g NaCl)	/			
Dry:	1h nitrogen stream				
Elution:	3x 1mL MeOH/ACN (1:1, v/v)				
		ſ			

Pesticides	Recovery	RSD [%]	Set value
	[%]	n = 4	[ng/l]
Desethylsimazin	85	5,8	100
2,6-Dichlorbenzamid	84	5,9	100
Ethidimuron	86	4,9	200
Chloridazon	86	3,6	50
Desethylatrazin	87	6,5	100
Desethylsebuthylazin	84	4,9	100
Bromacil	77	5,1	200
Simazin	84	7,1	100
Metribuzin	76	7,9	200
Desethylterbuthylazin	82	6,7	100
Metabenzthiazuron	82	5,4	50
Chlortoluron	83	4,5	50
Atrazin	82	9,0	100
Diuron	81	5,6	100
Isoproturon	81	5,5	100
Metazachlor	78	6,7	100
Terbumeton	77	9,1	100
Sebuthylazin	83	5,5	50
Propazin	79	10,3	50
Dimefuron	79	1,9	100
Terbuthylazin	78	9,0	100
Triadimenol	84	0,9	100
Epoxiconazol	80	2,6	200
Terbutryn	77	6,3	100
Metolachlor	71	16,2	200
Propiconazol	81	4,1	200
Kresoxim-methyl	79	3,5	100

* By courtesy of Mr. Cornelius Schmidt-Leistner from the "Bayerisches Landesamt für Wasserwirtschaft" in Munich.

Determination of selected human pharmaceutical compounds in effluent and surface water samples by high-performance liquid chromatography *

SPE Method

SFL MELINU		Compound	SPE column recoveries ^a		
Sorbont: a	strata-X 200ma/6ml		Strata X R.S.D. (%)	LOD ^b (ngl ⁻¹)	
Sorbent: strata-X, 200mg/6mL		Acetyl-sulfamethoxazole	56 (5.4)	50	
Conditioning: 3x 2mL methanol		Clofibrie aeid	83 (7.0)	50	
		Dextropropoxyphene	63 (3.9)	20	
	3x 2mL water	Diclofenac	62 (20)	20	
	SX ZITIL WALE	Erythromycin	73 (30)	10	
	2x 2ml water pH 2	Ibuprofen	117 (22)	20	
	3x 2mL water, pH 3	Lofepramine	4.2 (35)	10	
		Mefenamic acid	24 (7.9)	50	
Load:	1L water sample, pH 3	Paracetamol	75 (6.9)	50	
_		Propranolol	45 (5.6)	10	
Dry:	vacuum aspiration	Sulfamethoxazole	120 (16)	50	
-		Tamoxifen	42 (40)	10	
Elution:	3x 2mL methanol	Trimethoprim	123 (2.5)	10	

* Journal of Chromatography A, 1015 (2003) 129–141, Martin J. Hilton, Kevin V. Thomas Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Burnham Laboratory, Remembrance Avenue, Burnham on Crouch, Essex CM0 8HA, UK

strata

Quantification of β-lactam antibiotics in urine and wipe samples from environmental and biological monitoring by SPE and LC-MS/MS

Institute of Energy and Environmental Technology (IUTA), D-47229 Duisburg, Germany

wipe sample extracts (water) and urine samples					
	RT [min]	Recovery Strata X [%]ª		LOD water [µg/L]	LOD urine [µg/L]
Cefotiame (1)	2.02	75		27	5.0
Amoxicillin (2)	2.81	78		0.8	20
Ampicillin (3)	7.02	74		0.5	0.4
Cefazoline (4)	9.32	71		0.9	11
Cefuroxime (5)	9.87	80		0.3	2.2
Piperacillin (6)	11.79	63		0.2	2.8
Penicillin G (7)	12.26	81		0.2	0.7
Penicillin V (8)	13.02	67		0.3	0.4
^a n = 1; ^b n = 3					

 Table 2
 Retention times (RT), recoveries and limits of detection (LOD) for wipe sample extracts (water) and urine samples

strata

strata-X is a trademark of Phenomenex Inc. Florisil is a registered trademark of U.S. Silica Company.